

Get yourself connected

Cost control by:

Standardising, replicating wherever possible and following a manufacturing-style value-engineering approach.

One oilfield services executive noted:

"The main cost drivers are specifications. We are designing Rolls-Royces instead of Minis. There is so much gold-plating on everything we are doing now".

Deloitte -

Standardisation

OUR CUSTOMERS

BUMAX AB Production sites

- Sales and Customer service, Örebro Sweden
- Central warehouse, Värnamo Sweden
- Cold heading and hot forging, Åshammar Sweden
 - Manufacturing of fasteners since 1899
 - Stainless fastener production since 1926 (one of the first in the world)
 - M3 to M36
- Turning, Värnamo Sweden

WITHSTAND THE GREATEST

- Ø 6 to 65 mm, CNC lathes, small volume
- Ø 8 to 35 mm, CNC multi-spindle, volumes over 10 000 items
- Ø 5 to 45 mm, Hydromat, volumes over 25 000 items

Quality

ISO 9001

DEVEI

OPED

WIT

ISO 14001, environmental management

HSTAND THE GREAT

EST

FORCES

- The Pressure Equipment Directive PED No 97/23/EC (BUMAX 88)
- ISO/TS 16949, management system for Automotive Industry
- CE marking for non-preloaded applications according to EN 15048
- Norsok M-650 D60

- Solution provider regarding materials with in house material expertise
- Made in Sweden and only European material according to our own specification
- Cold headed fasteners with unique mechanical properties.
- Norsok approved for turned Super Duplex fasteners
- Expertise in cold heading of difficult stainless material

Families of Stainless Steel?

EN 10022: Corrosion resistant steels

Stainless steels are alloyed steels with a carbon content of max 1.2% and min 10.5% Chromium, with or without other alloying elements

Cr 18% Ni 8% Fe bal

Cr 25% Ni 7% Mo 4% Fe bal

C 0.2% Cr 13% Fe bal

W/IT ISTAND HF GRFA FORCES

BUMAX® begins where standard ends

DEVELOPED

TO

WITHSTAND THE GREATEST FORCES

BUMAX

BUMAX® portfolio

Nominal wt%

GRADE	EN	UNS	Microstructure	C max	Cr	Ni	Мо	Other	PRE ^ຫ
BUMAX 88	1.4432, 1.4436, 1.4435	S31603	Austenitic	0.03	17	11.5	2.7		27
BUMAX 109	1.4432, 1.4436, 1.4435	S316O3	Austenitic	0.03	17	11.5	2.7		27
BUMAX Nitro		S31675	Austenitic	0.035	20.5	10	2.4	N 0.4	35
BUMAX SA	1.4547	S31254	Austenitic	0.01	20	18	6.2	N, Cu	43
BUMAX LDX ²⁾	1.4162	S32101	Ferrite-Austenitic		21.5	1.5	0.3	N 0.22, Mn 5	26
BUMAX DX	1.4462	S31803, S32205	Ferrite-Austenitic	0.03	22	5.2	3.2	N 0.18	36
BUMAX SDX	1.4410	S32750	Ferrite-Austenitic	0.03	25	7	4	N 0.3	42
BUMAX HDX	1.4658	S32707	Ferrite-Austenitic	0.03	27	6.5	4.8	N 0.4, Co	49
BUMAX Ultra		S46910	Martensitic	0.02	12	9	4	Al, Ti, Cu	25
BUMAX HE	1.4980	S66286	Austenitic	0.08	15	26	1.5	Ti, V	
BUMAX HEP	2.4952	N07080	Austenitic	0.10	19	>65	-	Al, Ti, Co	

Pitting Resistance Equvivalent, PRE value, a common and good way of ranking stainless steels

FORCES

-51

PRE = %Cr + 3.3 x %Mo + 16 x %N

HF GREAT

'AND

W/IT

Corrosion resistance

5 year exposure at coastal roads

Results from exposure of stainless steel specimens in heavily trafficated coastal roads at different locations in Sweden.

Maximum attack depth in µm.

AND

HF GRFA

ORCES

Grade	Standard	PRE	Borås	Gothenburg	Öresund	Öland	Höga kusten	Svartnora
A2 (304)	1.4310	20	65	50	64	100	80	29
A4 (316)	1.4404	25	35	52	30	45	27	-
A4 (316L high Mo)	1.4436	27	-	-	-	-	-	-
Lean Duplex	1.4162	26	-	-	26	62	-	-
Duplex	1.4462	36	-	-	-	-	-	-
Super Duplex	1.4410	42	-	-	-	-	-	-
254SMO	1.4547	43	-	-	-	-	-	-

Outokumpu Corrosion Data

Mechanical properties

Grade	Strength	Yield Strength	Tensile strength (MPa),	
	Class	(MPa), min	min	
Strength class desig	nation accor	ding ISO 3506 (stainles	ss steel fasteners)	
A4-70	70	450	700	
A4-80	80	600	800	
Strength class designation according ISO 898 (carbon steel fasteners)				
8.8 Carbon steel	8.8	640	800	
10.9 Carbon steel	10.9	900	1000	
12.9 Carbon steel	12.9	1080	1200	
Bumax 88	8.8	640	800	
Bumax 109	10.9	900	1000	
Bumax SDX	12.9	1080	1200	
Bumax Ultra	15.9	1350	1500	

- Standard A2 or A4 stainless steel has lower strength than Carbon steel
- Bumax offers same or higher strength than Carbon Steel

FST

ISTAND THE GREAT

FORCES

Strain hardening

Cold forming such as drawing and cold heading stretches the grains \Rightarrow Higher strength

Duplex microstructure before and after strain hardening

ISTAND THE GREATEST FORCES

Bumax production

DEVELOPED TO WITHSTAND THE GREATEST FORCES -

Bumax production

 $\langle \langle \neg \rangle \rangle \land \gamma \rightarrow \langle \rangle$

DEVELOPED TO WITHSTAND THE GREATEST FORCES /

Rolled vs Cut threads

Rolled threads offers several advantages

- Work hardening occurs during rolling \Rightarrow higher strength and hardness
- Compressive stresses increases Fatigue resistance
- Higher thread hardness reduces the risk of galling

Machining disrupt grain flow and create planes of weakness

Work hardening causes the material to plastically flow

FORCES

Cut Thread

WITHSTAND THE GREATEST

Fatigue

- Fatigue occurs when a material is subjected to repeated loading and unloading (cyclic loading)
- Repeated stress may be much less than the yield strength
- Microscopic crack form at stress concentrations such as
 - Surface defects
 - Inclusions
 - Slags

LOPED TO WITHSTAND THE GREATEST FORCES

Fatigue fracture

DEVELOPED TO WITHSTAND THE GREATEST FORCES -

Fatigue resistance of BUMAX Duplex

M6x50 ISO 4017

Tested at Sandvik R&D

Stress, MPa	BUMAX Duplex	BUMAX 88	A4-80
Typical preload	cycles before fracture	cycles before fracture	cycles before fracture
	TS 1130 MPa YS 978 MPa	TS 1090 MPa YS 928MPa	TS 960 MPa YS 815 Mpa
	A 4.4 mm	A 3.5 mm	A 4.6 mm
400±50	10 million	10 million	10 million
400±50	10 million	10 million	1.4 million
400±55	10 million	10 million	0.4 million
400±55	10 million	10 million	0.4 million
400±60	10 million	4.2 million	0.5 million
400±60	10 million	5.6 million	0.3 million
400±70	10 million	1.9 million	-
400±70	10 million	1.8 million	-
400±80	10 million	0.7 million	-
400±80	10 million	0.4 million	-
400±85	10 million	-	-
400±85	2.6 million	-	-
400±90	5.1 million	-	-
400±90	0.6 million	-	-
400±95	0.4 million	-	-
400±95	0.3 million	-	-

ISO and ASTM

DEVELOPED TO WITHSTAND THE GREATEST FORCES -

Bumax, higher standard within standards

Fastener standard

С

С

0.08

A4

B8M

Cr

Cr

0.08 16-18.5 10-15

Steel standard

(Just a few examples many more exists)

Brand name

		316	C 0.08	Cr 16-18	Ni 10-14	Mo 2-3	Bumax 88
		316L	C 0.03	Cr 16-18	Ni 10-14	Mo 2-3	Bumax 109
		UNS S31603	C 0.03	Cr 16-18	Ni 10-14	Mo 2-3	
		UNS S31651	C 0.08	Cr 16-18	Ni 10-14	Mo 2-3	
		EN 1.4401	C 0.07	Cr 16.5-18.5	Ni 10-13	Mo 2-2.5	
Mo 2-3] 	EN 1.4404	C 0.03	Cr 16.5-18.5	Ni 10-13	Mo 2-2.5	
Mo 2-3		EN 1.4432	C 0.03	Cr 16.5-18.5	Ni 10.5-13	Mo 2.5-3	Tighter spec
		EN 1.4435	C 0.03	Cr 17-19	Ni 12.5-15	Mo 2.5-3	than any standard. Exact chemical
		EN 1.4436	C 0.05	Cr 17-19	Ni 12.5-15	Mo 2.5-3	composition is
		SS 2343	C 0.03	Cr 17-19	Ni 12.5-15	Mo 2.5-3	connucritiur
		SS 2347	C 0.07	Cr 16.5-18.5	Ni 10-13	Mo 2-2.5	

Ni

Ni

16-18.5 10-15

BUMAX® 88/109

Bumax 88 and Bumax 109 are premium A4 fastener offered in two strength classes

- Bumax 88/109 offer many advantages compared to a typical A4 fasteners
- Higher strength
- Better corrosion resistance
- Higher fatigue resistance
- Always thread rolled and coated with our tailor made assembly wax to prevent galling
- Full traceability with 3.1 certificate
- Stock product

DEVELOPED TO WITHSTAND THE GREATEST FORCES -

Grade: BUMAX 88

Customer: Country: Rolls Royce Sweden, Finland, Norway, USA

Rolls Royce water jest are used on navy ships as well as civil high speed boats. BUMAX 88 fulfills the demands of:

- Corrosion resistance in seawater
- High fatigue resistance
- Consistent, reliable, high quality material

Control Valves for X-mas tree

Grade:	
BUMAX 88	
Customer:	Country:
Oceaneering	Norway
Rotator	

Hydraulic Directional Control Valves (HCVs) are used to control various critical functions of a subsea X-mas Tree (XMT) and other well access tooling.

Submarines

Grade: BUMAX 88	
Customer:	Country:
TKMS	Germany

ThyssenKrupp Marine Systems (TKMS) is one of the leading system providers for submarines and naval vessels.. BUMAX 88 fulfills the rigorous quality and security demands for HDW submarines.

- Reliable and consistent properties.
- Full traceability
- High strength
- Good corrosion resistance
- Many different sizes in stock

Cargo pump system

Grade:

BUMAX 88, BUMAX 109, BUMAX Super Austenite

Customer:	Country:
Frank Mohn	Norway

Cargo pumps for handling different types of liquid cargo. Many times highly corrosive medias.

The reasons for using BUMAX are:

- Consistent, reliable, high quality material
- High strength
- Good corrosion resistance
- Full traceability
- Large range of dimensions ins tock

--- Submerged cargo pump

- Cargo heater

COLOR BRANCICCO

System control .

Hydraulic power unit -

Hydraulic piping .

Submerged ballast pump

Deck machinery -

Thruster

Grade: BUMAX 88

Customer:	Country:
Brunvoll	Norway

Brunvoll manufacture thrusters and provides driving/control systems in connection with the thruster. BUMAX 88 is mounted on the propeller blade and offers.

- Good corrosion resistance in sea water
- Excellent fatigue resistance
- Full traceability

**

Consistent, reliable, high quality material

Offshore Windmill

ALSTOM ECO-1XXM

Grade: BUMAX 88	
Customer:	Country:
Alstom	North Sea

Alstom is designing and producing offshore and onshore wind turbines. BUMAX 88 because of its:

- Excellent corrosion resistance
- Consistent, reliable, high quality material

CERN, Particle accelerator

Grade: BUMAX 109

Customer: CERN

Country: FRA, CN

CÉRN

At CERN, physicists are probing the fundamental structure of the universe. BUMAX 109 is used in the cavity system of the particle accelerator and fulfills the high demands of:

- High strength
- Low magnetic permeability
- Low Cobalt content

BUMAX[®] Super Duplex (SDX) strain hardened

10.9 bolts now in Stock Bumax SDX has exceptional corrosion resistance and suited for marine environments in chloride bearing medias such as saltwater.

Bumax SDX offer many advantages compared to other Super Duplex fasters that are available on the market

- Higher strength. BUMAX SDX is offered in strength class 10.9 or 12.9
- Cold formed and thread rolled which and thereby offers higher strength, higher fatigue resistance and less risk of galling
- Best possible steel, 1.4410, UNS S32750, grade from Sandvik
- Always coated with our tailor made assembly wax
- Full traceability with 3.1 certificate
- Stock product, visit <u>www.bumax.se</u>

TO WITHSTAND THE GREATEST FORCES

Real strength on BUMAX[®] Super Duplex

Strength on Bumax SDX in stock

Marked class 100

Туре	Dim	Rm 1	Rm 2	Rp _{0,2} 1	Rp _{0,2} 2
		<u>(MPa)</u>	<u>(MPa)</u>	(MPa)	(MPa)
ISO 4014	M12x100	1208	1224	1102	1112
ISO 4014	M12x120	1219	1198	1079	1084
ISO 4014	M12x80	1218	1239	1103	1108
ISO 4014	M12x90	1215	1215	1101	1110
ISO 4762	M12x100	1231	1255	1055	1091
ISO 4762	M12x120	1207	1224	1033	1055
ISO 4762	M12x45	1248	1226	1128	1125
ISO 4762	M12x50	1205	1254	1105	1149
ISO 4762	M12x90	1210	1219	1042	1061

DEVELOPED TO WITHSTAND THE GREATEST FORCES

Exceptional ductility of Bumax SDX

A4 class 80, elongation min 0.3 x diameter

VELOPED TO WITHSTAND THE GREATEST FORCES -

Subsea fiber optic transmission

Grade:	
BUMAX Hyper D	uplex
Customer:	Country:
Siemens	Norway

Fiber optic sub sea cables used for communication, monitoring and controlling the oil/gas platform. The applications should last at least 25 years Titanium screws has previously been used but has been substituted by BUMAX Super Duplex due to:

- · Better corrosion resistance
- Much higher strength
- The grade has excellent track record in oil/gas, offshore applications
- Lower cost than Titanium

SIEMENS

BUMAX[®] SDX Application

WITHSTAND THE GREATEST FORCES

DEVELOPED

TO

Grade:	
BUMAX Super D	uplex
Customer:	Country:
InApril	Norway

InApril manufactures complete and fully integrated ocean bottom node based seabed seismic solution systems for oil exploration. Super Duplex cold headed fasteners are used for the system. Super duplex is needed to achieve enough strength and corrosion resistance. The fasteners are surface treated to prevent galvanic corrosion. System is used down to 3000 m.

Marine suspension seats

Grade: BUMAX SDX

Customer: Ullman Dynamics

Dynamics Ullman Dynamics is the World Leader in Shock Mitigation Seating. Ullman Dynamics contacted Bufab because of corrosion problems with their A4 fasteners.

Country:

Sweden

Norsok approved SDX

- It has not existed any Fastener standard for Norsok until now
- Norsok Super Duplex fasteners has been bar turned from Norsok M-630 MDS
 D57 approved bars and machined fasteners from it
 - Using the bar MDS D57 also for fasteners

- Norsok has however recently released two standard specifically for fasteners
 - M-630 MDS D60, machined fasteners

WITHSTAND THE GREATEST FORCES

M-630 MDS D59, strain hardened fasteners

Norsok summary

	MDS D57		MDS D60		MDS D59		
Type of MDS	Bar material		Fasteners		Fastener		
Tensile strength Rm min	750 MPa	Tested on bars (steel	750 MPa	Tested on bars (from	860 MPa	Tested on fasteners	
Yield strength Rp _{0.2} min	550 MPa	mill certificate)	550 MPa	D57 certificate)	725 MPa		
Elongation A min	25%		16%		16%		
RA min	-		30%		30%		
Impact strength min	45J average at -46°C		45J average at -50°C		45J average at -46°C		
Hardness max	-		33 HRC		35 HRC		
Corrosion test G48	No pitting max 4 g/m²	Tested on bars (steel	No pitting max 4 g/m²	Tested on bars (from	No pitting max 4 g/m²	Tested on bars (from D57 certificate)	
Ferrite content	35 - 55%	mill	40 - 60%	D57 certificate)	40 - 60%		
Microstructure	No detrimental phases		No detrimental phases		No detrimental phases		

EVELOPED TO WITHSTAND THE GREATEST FORCES -

BUMAX[®] Norsok SDX application Johan Sverdrup

- Bolts for Johan Sverdrup in Super Duplex
- Norsok D60 and Statoil VN605 Specifikation
- Life expectency min 50 years
- Corrosion resistance with PRE Min 40
- Studbolts, nuts and washers

DEVELOPED TO WITHSTAND THE GREATEST FORCES -

Super duplex fastener production

Production	Typical properties	Comment
Machined	R _m ~ 820 MPa R _{p0.2} ~ 630 MPa	 Most common way of producing Super Duplex fasteners Most competitors do not test the strength on the final product, they are copying the bar properties into the certificate
Hotforged	R _m ~ 900 MPa R _{p0.2} ~ 750 MPa	 Super Duplex are very sensitive in the temp range of 600 to 1000 °C Formation of intermetallic phases and forming delta-ferrite These defects will drastically reduce the corrosion resistance and ductility of the fastener Formation of oxide that will decrease corrosion resistance unless it is thoroughly removed Important that the final fastener is thoroughly tested to make sure that the microstructure is OK
Strain hardened Bumax SDX	R _m ~ 1220 MPa R _{p0.2} ~ 1080 MPa	 Unique production method for Bumax Does not add any extra heat during processing so it is completely safe from forming any type of intermetallic phases Bumax always test the final product

BUMAX® Lock

ALL-METAL LOCK NUT

Bumax Lock is an all-metal lock nut made out of the same steel grade as Bumax 88

- Special designed thread profile that locks when it is tightened
- 316L high Mo Bumax Lock in stock
- Bumax Lock is free spinning with no prevailing torque
- Better load distribution and greater gripping strength
- Reusable, up to approximately 10 times
- Prevents vibration loosening and increased fatigue resistance

NOV uses Bumax Lock

Tightening Torque and Friction

- Pre-tension is necessary for a joint to resist stresses and function correctly
- The greater part of the tightening torque is used to overcome friction
- Only 10 to 20% of the torque remains to achieve the pretension force (preload).

_DEVELOPED TO WITHSTAND THE GREATEST FORCES -

Tightening Torque and Friction

Control of the friction is the key to be able to predict a clampload

ÉVELOPED TO WITHSTAND THE GREATEST FORCES -

Tightening torque, Waxed Stainless

Description	n Class	Screw/bolt diameter														
		M3	M4	M5	M6	M8	M10	M12	M14	M16	M18	M20	M24	M27	M30	M36
Tightening torque Mv i Nm	50 70 80 BUMAX 88 BUMAX 109	0.4 0.9 1.2 1.3 1.7	1.0 2.0 2.7 2.9 4.1	1.9 4.1 5.4 5.7 8.1	3.3 7.0 9.3 9.8 14	7.8 17 22 25 34	15 33 44 47 66	27 57 76 82 115	43 91 121 129 161	65 140 187 198 248	91 195 261 275 344	127 273 364 385 481	220 472 629 665	318 682 909 961	434 930 1240 1310	755 1620 2160 2280
Prestressin average kN	ng force 50 70 80 BUMAX 88 BUMAX 109	0.8 1.5 2.0 2.1 2.9	1.4 2.6 3.4 3.6 5.2	1.9 4.2 5.5 5.9 8.6	2.7 5.9 7.8 8.4 12	5.0 11 14 15 21	7.8 17 23 24 34	12 25 33 35 49	16 34 45 48 60	21 47 61 65 81	27 56 75 80 100	33 72 96 102 128	48 103 138 181	63 134 179 235	77 164 219 287	112 239 319 418
Breaking fo kN	orce 50 70 80 BUMAX 88 BUMAX 109	2.5 3.5 4.0 4.0 5.0	4.4 6.1 7.0 7.0 8.8	7.1 9.9 11 11 14	10 14 16 16 20	18 26 29 29 37	29 41 46 46 58	42 59 67 67 84	58 81 92 92 115	79 110 126 126 157	96 134 154 154 192	123 172 196 196 245	177 247 282 282	230 321 367 367	281 393 449 449	409 572 654 654
Yield load kN	50 70 80 BUMAX 88 BUMAX 109	1.3 2.2 3.0 3.2 4.5	2.2 3.9 5.3 5.6 8.0	2.9 6.4 8.5 9.1 13	4.2 9 12 13 18	7.7 16 22 23 33	12 26 35 37 52	18 38 51 54 76	24 52 69 74 93	33 71 94 100 125	40 86 115 123 154	51 110 147 157 196	74 159 212 226	96 207 275 294	118 253 337 359	172 368 490 523

The calculated torque will give a preload that is approximately 65% of the yield strength.

Increase torque on flange screws/nuts with 10%

Increase torque on countershunk screws with 30%

Can be found on <u>www.bumax.se</u> or technical handbooks

EVELOPED TO WITHSTAND THE GREATEST FORCES -

Galling

Galling is a cold welding phenomena that can occur between male and female thread under heavy pressure. Stainless steel is generally more sensitive than other metallic materials due to the passive chromium oxide layer that breaks down under high pressure.

Bumax fasteners offers less risk of galling due to:

- High surface hardness reduces the risk of galling.
- Always thread rolled
- Fasteners coated with assembly wax that gurantees a low and consistent friction
- Overall better surface properties and less thread dimension variation

What is also important:

- Avoid fine threads if possible
- Use a good lubricant, with low and even friction coefficient
- A high speed during assembly will generate more heat and increase the risk of galling. Lowering the wrench speed during assembly and not use a power tool is therefore recommended

Benefits

- Cost Savings
- Full Traceability
- Corrosion Resistance
- High Strength
- Fatigue Strength
- High Quality
- Heat Resistance

Get yourself connected

Q&A